Quod Erat Demonstrandum

2009/01/31

拉 curve

Filed under: Additional / Applied Mathematics,Junior Form Mathematics — johnmayhk @ 10:48 下午
Tags:

中二的同學問我如何「拉 curve」(即調整分數),讓我略談。

比如數學科某次考試結果,最高和最低分數分別為 79 分及 4 分,但因為及格率只有三成,太低,於是把原本得 42 分的變成及格,即 50 分,以符合某一個及格率。調整分數後,新的最高和最低分數,仍然為 79 分及 4 分。

調整分數方法有無限多種(起碼,遞增函數有無限多種),現只談一種:直線段。

mark-adjustment12
(圖一)

上圖顯示,不同的原始分數,對應不同的増分。最高和最低分數(即 79 分及 4 分)的增分為零;原始分數為 42 者,增分是最多的,共 8 分;其餘的分數,按直線段變換,例如,原始分數為 30 分者,增分為 5.47(見上圖),即經調整後的新分數,變成 30 + 5.47 = 35.47 分。

中二同學最擔心,就是問:這種調整分數方法,會否影響排名?即是說,同學甲原始得分高於同學乙,但當調整分數後,會否令同學甲的得分反而低於同學乙?

不會(那天我叫他們給我證明一下),一言以敝之:因為用來調整分數的變換函數是遞增(increasing)的。

好,先「唔好咁數學」,用個圖睇睇。

直接看原始得分和新的得分之關係,如果分數沒有調整,新舊得分無異,所以,分數變換圖像是一條 45 度線段,見下圖。

mark-adjustment-2a

現在希望把 42 分變換為 50 分,我們繪一點 (42,50),見下圖

mark-adjustment-2b

好了,把該點與其餘兩個端點,以直線段連起,見下圖

mark-adjustment-2c
(圖二)

於是,不同得分可以從上圖得出,例如原始分數為 30 分,新的分數從圖上立即看出,即 35.47。中二同學擔心的問題已不存在,因為變換函數是遞增,所以同學的排名是保留的。例如同學甲得 p 分,同學乙得q 分,同學甲得分比同學乙高,即 p > q。設同學甲和同學乙的新得分數分別是 f(p) 及 f(q)(見下圖),從下圖易知 f(p) > f(q),即同學甲的新得分,仍然比同學乙的高。

mark-adjustment-2d

之前已說過,「符合要求」的調整分數方法有無限多,隨便舉例,見下圖

mark-adjustment-2e

上圖顯示的圖像是經過三個藍點的圓弧(circular arc),也是一種令排名不變的變換。

好了,sba 時間:

1. 由(圖一)過渡到(圖二)是憑直觀的,試分別具體地寫出變換函數的公式,證明(圖一)和(圖二)都是代表相同變換。

2. 上文的直線變換,保留了範圍(range)和排名,但對於其他的統計參數,例如平均分,中位數,標準差等等,又會如何影響?試探究一下。

3. 除了直線和圓弧,試具體地寫出其他「符合要求」的調整分數變換函數。

4. 「每人增加相同的分數」也是一種調整分數之方法,試探討一下這個做法的利弊。

About these ads

6 則迴響 »

  1. 反而我想問下圖一呀Sir你選擇了42分這一點來拉,
    可是如果42-79分這個range的人不多,
    這不就達不到要"附合某一個合格率"這個功能嗎?
    應該怎麼決定選那一點去拉呢?

    另外,在圖一選擇某一點來拉這條curve,
    而不選擇全部加同樣分數,
    目的只是希望要"附合某一個合格率",
    而不是令要同學分數增加,變得"好看",
    所以就選擇接近合格分數的同學給加較多的分數,
    這個說法對嗎?
    但是的話,不就是對低分的同學有點兒不公平嗎?

    第四題我認為加同一樣分數的弊處就是有某數位同學很高分,
    例如已經是96分,
    而有大部份的同學集中在40-45分的位置,
    那麼就比較難加全部加分,
    因為我想學校也不會將同學的分數加至100…=.="
    而最重要的是合格率也不會提升太多,對嗎?

    迴響 由 Patrick Wong — 2009/01/31 @ 11:41 下午 | 回覆

  2. 我有個friend 間學校係每人都加n分,
    直至最高分果個人升到100分,
    然後成績表出grade

    迴響 由 yU — 2009/01/31 @ 11:50 下午 | 回覆

  3. @Patrick

    1. 如果介乎 42 至 79 分者仍屬少數,則取更低的原始分數,比如 35 分,變成 50 分,使及格率不會太難看。
    2. 袁校長曾說:「沒有一種調整分數的方法是公平的。」比如,每人加相同的 8 分,那麼,原本得 4 分者,分數增加了 200%,但原本得 79 分者,分數只增加約 10%。
    3. Patrick 說對了每人加相同分數的弊處。

    @yU

    如果最後不過是出等級(grade),那麼「拉 curve」(每人加 n = 100 – max{all scores} 分)似乎有點多餘了。

    想多說一句。

    舉例,附加數學會考卷,滿分 110 分,約取 30 分便可得 E,即社會人士認為的及格分數。但校內卷,則以 50 分為及格,結果往往死傷枕藉,及格率偏低,和公開試成績出現一大落差。校內卷和公開試的水平又是否貼近?亦是另一個問題。(注,公開試的題目,尤其是長題目,不一定是淺的。)

    迴響 由 johnmayhk — 2009/02/01 @ 2:40 下午 | 回覆

  4. 如何決定某原始分數會加多少分?
    即圖一的graph是如何畫出來的?
    會考同高考也是用上述方法拉curve?

    迴響 由 wing — 2009/05/02 @ 6:10 下午 | 回覆

    • >如何決定某原始分數會加多少分?
      這是政治決定,看看上頭希望有多少及格率。

      >會考同高考也是用上述方法拉curve?
      正如我內文提及,我們可以有無限種拉 curve 的方式;至於會考同高考用什麼方法拉,可能你要向考評局查詢。

      迴響 由 johnmayhk — 2009/05/04 @ 11:15 上午 | 回覆

  5. The current method of norm-referencing is as follow.

    http://www.edb.gov.hk/index.aspx?nodeID=5511&langno=2

    現時用以匯報學生成績的制度,一般稱為「常模參照」評級方法。學生在各科的成績分為A至F級,而表現低於F級的成績則被評為「未能評級」。香港考試及評核局(考評局)進行常模參照評級時,會選定一批近年在公開考試表現較穩定的學校作為「對照組」,進行分析,藉以鑑定在該次考試中,對照組學校按預定百分比考取不同等級的學生的得分;然後,考評局會根據這些「分數線」,為參加考試的所有學生分配等級。在這個制度下,各科水平是憑藉觀察「對照組」學校的表現來釐訂的,雖可確保不同年度考生的水平大致相若,但欠缺具體的描述。換言之,現行的匯報制度主要比較學生的表現,但未能顯示學生的知識水平和實際具備的能力。以對照組學校的學生表現來決定各等級的「分數線」,亦有可能因為升中收生制度改變和學生差異擴大而出現偏差。

    迴響 由 stupid girl — 2009/05/27 @ 12:11 下午 | 回覆


此篇文章迴響的訂閱源料 TrackBack URI

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 變更 )

Twitter picture

You are commenting using your Twitter account. Log Out / 變更 )

Facebook照片

You are commenting using your Facebook account. Log Out / 變更 )

Google+ photo

You are commenting using your Google+ account. Log Out / 變更 )

連結到 %s

The Rubric Theme. 在WordPress.com寫網誌.

關注

Get every new post delivered to your Inbox.

%d bloggers like this: