Quod Erat Demonstrandum

2008/05/10

A question about linear independence

Filed under: University Mathematics — johnmayhk @ 5:49 下午

Let V be a finite vector space over \mathbb{Q}, let F: V \rightarrow V be a linear transformation. Suppose x,y,z \in V such that

1. F(x) = y
2. F(y) = z
3. F(z) = x+y

Suppose x is non-zero. Show that x,y,z are linearly independent.

Advertisements

2 則迴響 »

  1. i am a maths undergraduate in the UK
    多多指教!

    迴響 由 雅典娜 — 2008/05/11 @ 2:05 上午 | 回應

  2. Nice to meet you 雅典娜! It is great to know someone study math in different countries, share something about the studying in UK with us if you want to.

    Solution to the question

    Firstly, we claim that x, y are independent, otherwise, y = ax for some non-zero a \in \mathbb{Q}. Apply F, F(y) = F(ax), yield z = ay = a^2x.

    From (3), F(z) = x + y
    \Rightarrow F(a^2x) = x + ax
    \Rightarrow a^2F(x) = x(1 + a)
    \Rightarrow a^2y = x(1 + a)
    \Rightarrow a^3x = x(1 + a)

    Since x \ne 0, yield
    a^3 - a - 1 = 0

    But there should be no rational root for the equation above, hence a does not exist and therefore x, y are independent.

    Now, similarly, we claim that z is independent of x and y, otherwise, let z = bx + cy for some b, c \in \mathbb{Q}. Apply F, yield

    F(z) = bF(x) + cF(y)
    \Rightarrow x + y = by + cz
    \Rightarrow z = \frac{1}{c}x + \frac{1 - b}{c}y (Note: c \ne 0 otherwise x, y will not be independent)

    Hence \frac{1}{c}x + \frac{1 - b}{c}y = bx + cy
    By the independence of x and y, we have

    \frac{1}{c} = b
    \frac{1 - b}{c} = c

    Eliminate b; thus c^3 - c + 1 = 0 and there is no rational c satisfying the equation, hence x,y,z are independent.

    I forget the source of this question, sorry.

    迴響 由 johnmayhk — 2008/05/13 @ 10:46 上午 | 回應


RSS feed for comments on this post. TrackBack URI

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

您的留言將使用 WordPress.com 帳號。 登出 / 變更 )

Twitter picture

您的留言將使用 Twitter 帳號。 登出 / 變更 )

Facebook照片

您的留言將使用 Facebook 帳號。 登出 / 變更 )

Google+ photo

您的留言將使用 Google+ 帳號。 登出 / 變更 )

連結到 %s

在 WordPress.com 建立免費網站或網誌.

%d 位部落客按了讚: