Quod Erat Demonstrandum

2009/02/19

Just an old question about F.4 trigonometry

Filed under: Additional / Applied Mathematics,HKCEE — johnmayhk @ 9:55 下午
Tags: ,

It is glad that F.4 students asked me how to evaluate

\sin1^o \times \sin2^o \times \sin3^o \times \dots \times \sin90^o

Here is a way.

Knowing that

\sin\theta \times \sin(60^o - \theta) \times \sin(60^o + \theta) \equiv \frac{1}{4}\sin3\theta

Hence the required value

= (\sin1^o\sin59^o\sin61^o)(\sin2^o\sin58^o\sin62^o)\dots(\sin29^o\sin31^o\sin89^o)(\sin30^o\sin30^o\sin90^o)\sin60^o
= (\frac{1}{4})^{30}\sqrt{3}(\sin3^o\sin6^o\sin9^o\dots\sin87^o)
= (\frac{1}{4})^{30}\sqrt{3}(\sin3^o\sin57^o\sin63^o)(\sin6^o\sin54^o\sin66^o)\dots(\sin27^o\sin33^o\sin87^o)\sin30^o\sin60^o
= (\frac{1}{4})^{40}\times 3(\sin9^o\sin18^o\sin27^o\dots\sin72^o\sin81^o)
= (\frac{1}{4})^{40}\times 3(\sin9^o\cos9^o)(\sin18^o\cos18^o)(\sin27^o\cos27^o)(\sin36^o\cos36^o)\sin45^o
= (\frac{1}{4})^{42}\times \frac{3\sqrt{2}}{2}\sin18^o\sin36^o\sin54^o\sin72^o
= (\frac{1}{4})^{42}\times \frac{3\sqrt{2}}{2}\sin36^o\cos18^o
= (\frac{1}{4})^{45}\times 6\sqrt{10}

Of course, this is only one of the ways…

[OT] 今天我沒有上庭,太太轉述:原先法官判四至六個月,但一定要感謝法援的翁靜晶,她聽了我們的情況,竟然也為這個陌生人流淚,替我們求情,感恩地,法官先判兩星期羈留侯審。

發表迴響 »

仍無迴響。

RSS feed for comments on this post. TrackBack URI

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 變更 )

Twitter picture

You are commenting using your Twitter account. Log Out / 變更 )

Facebook照片

You are commenting using your Facebook account. Log Out / 變更 )

Google+ photo

You are commenting using your Google+ account. Log Out / 變更 )

連結到 %s

在WordPress.com寫網誌.

%d 位部落客按了讚: