# Quod Erat Demonstrandum

## 2009/06/26

### 閒談一些基本東西：導數符號，函數，解釋

1. 高階導數的符號

$\frac{d^2y}{dx^2}$

$\frac{dy^2}{dx^2}$　或　$\frac{d^2y}{d^2x}$(more…)

## 2009/06/23

### [FW][Song] No choice, I’ll be

Filed under: Fun,Life — johnmayhk @ 10:54 上午
Tags:

It was a love so big that it filled his heart
Til it swelled and finally burst apart
And where the love spilled out they called it art
But he never really had no choice (more…)

## 2009/06/22

### 考試前後

Filed under: HKALE,Junior Form Mathematics,Pure Mathematics — johnmayhk @ 8:15 下午
Tags:

1. Factorize $(x-1)(x-2)(x-3)(x-4) - 48$.
2. 把 8 cm * 10 cm 長方形一對角（opposite angles）摺疊，求摺痕長度。
3. 二進制轉和十六進制的直接互換方法。

## 2009/06/21

### 應用純數

Filed under: Additional / Applied Mathematics,HKALE,Pure Mathematics — johnmayhk @ 12:02 上午

## 2009/06/18

### 閒談小學數

Filed under: Family,Fun,mathematics — johnmayhk @ 6:50 下午
Tags:

## 2009/06/16

### 橢圓規

Filed under: Additional / Applied Mathematics,HKALE,HKCEE,Pure Mathematics — johnmayhk @ 5:57 下午

## 2009/06/14

### 捐血頒獎禮

Filed under: School Activities — johnmayhk @ 7:59 下午

## 2009/06/12

### [FW][YouTube] Math Rappers

Filed under: Fun — johnmayhk @ 9:34 下午
Tags:

## 2009/06/11

### 教你小學數

Filed under: Fun,Junior Form Mathematics,mathematics — johnmayhk @ 12:20 上午

## 2009/06/08

### [FW][YouTube] Films Chicken a la Carte by Ferdinand Dimadura

Filed under: Life — johnmayhk @ 6:49 下午

## 2009/06/07

### [FW] 在大自然中窺見費伯納契數列

Filed under: Fun,Junior Form Mathematics — johnmayhk @ 5:11 下午

http://sa.ylib.com/saeasylearn/saeasylearnshow.asp?FDocNo=1389&CL=81

－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－

http://www.bme.nchu.edu.tw/competition/
（頗有趣。香港有沒有類似的比賽？）

## 2009/06/04

### 溫書題

Filed under: HKALE,HKCEE,mathematics,Pure Mathematics — johnmayhk @ 4:28 下午
Tags: , ,

1. 有關數列的題目

=======================================
Let {$a_n$} be a sequence of positive integers. Define sequences {$b_n$} and {$c_n$} as
$b_1 = a_1, b_2 = a_1a_2 + 1, b_{n+2} = a_{n+2}b_{n+1} + b_{n}$. ($n \in \mathbb{N}$)
$c_1 = 1, c_2 = a_2, c_{n+2} = a_{n+2}c_{n+1} + c_{n}$. ($n \in \mathbb{N}$)
Let $x_n = \frac{b_n}{c_n}$. ($n \in \mathbb{N}$)

Show that $x_1 \le \lim_{n \rightarrow \infty}x_n \le 1 + x_1$.
======================================= (more…)

## 2009/06/01

### [FW] LOL – Law of love

Filed under: Fun — johnmayhk @ 10:05 下午

Universal Law Of Love:

“Love Can Neither Be Created Nor Be Destroyed; Only It Can Transfer From one Girlfriend To Another Girlfriend With Some Loss Of Money " (more…)