Quod Erat Demonstrandum

2014/02/11

二項極限

Filed under: NSS,Pure Mathematics — johnmayhk @ 3:16 下午
Tags: ,

某顏冊頁見以下結果:

johnmayhk-binomial-limit
(圖片來源:Mathematics)

在留言中提到

“…is a recently discovered beauty, probably in 2012…"

頓時有種叫人肅然起敬之感,但其實這不過是 M1,M2 的題目而已,同學可以先玩玩。

當然,我也要承認這是美麗的,起碼我從沒發現這個結果。

OK,做數時間:

對於足夠大的 n

\frac{s_{n-1}s_{n+1}}{s_n^2}

=\frac{C_0^{n-1}C_1^{n-1}C_2^{n-1}\dots C_{n-1}^{n-1}C_0^{n+1}C_1^{n+1}C_2^{n+1}\dots C_{n+1}^{n+1}}{C_0^nC_1^nC_2^n\dots C_n^nC_0^nC_1^nC_2^n\dots C_n^n}

=(\frac{C_0^{n-1}}{C_0^n})(\frac{C_1^{n-1}}{C_1^n})(\frac{C_2^{n-1}}{C_2^n})\dots (\frac{C_{n-1}^{n-1}}{C_{n-1}^n})\frac{1}{C_n^n}(\frac{C_0^{n+1}}{C_0^n})(\frac{C_1^{n+1}}{C_1^n})(\frac{C_2^{n+1}}{C_2^n})\dots (\frac{C_n^{n+1}}{C_n^n})C_{n+1}^{n+1}

易知 \frac{C_r^{n+1}}{C_r^n}=\frac{n+1}{n-r+1},故上式進一步化簡為

(\frac{n-1}{n})(\frac{n-2}{n})\dots (\frac{2}{n})(\frac{1}{n})\times(\frac{n+1}{n})(\frac{n+1}{n-1})(\frac{n+1}{n-2})\dots (\frac{n+1}{2})(\frac{n+1}{1})

=\frac{(n-1)!}{n^{n-1}}\times \frac{(n+1)^n}{n!}

=(1+\frac{1}{n})^n

於是

\displaystyle \lim_{n\rightarrow \infty}\frac{s_{n-1}s_{n+1}}{s_n^2}

=\displaystyle \lim_{n\rightarrow \infty}(1+\frac{1}{n})^n

=e

有關涉及二項係數的極限,很久以前在純數科考試卷擬過,現在修 M1,M2 的同學已無緣享用,在這貼貼算了:

Evaluate

\displaystyle \lim_{n\rightarrow \infty}\sqrt[n]{\frac{C_n^{3n}}{C_n^{2n}}}

答案是 \frac{27}{16},極不漂亮。

發表迴響 »

仍無迴響。

RSS feed for comments on this post. TrackBack URI

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 變更 )

Twitter picture

You are commenting using your Twitter account. Log Out / 變更 )

Facebook照片

You are commenting using your Facebook account. Log Out / 變更 )

Google+ photo

You are commenting using your Google+ account. Log Out / 變更 )

連結到 %s

在 WordPress.com 建立免費網站或網誌.

%d 位部落客按了讚: