Quod Erat Demonstrandum

2015/01/12

just a core math question involving variance

Filed under: mathematics,NSS — johnmayhk @ 10:35 下午

Just reply to a student about a core math question used in school exam.

Question

Let m, v be the mean and variance of {2x_1, 2x_2, 2x_3} respectively.

Show that the mean and variance of the set

{x_1+x_1,x_1+x_2,x_1+x_3,x_2+x_1,x_2+x_2,x_2+x_3,x_3+x_1,x_3+x_2,x_3+x_3}

are m and \frac{v}{2} respectively.

Proof

(Mean) For the original set,

\frac{2x_1+2x_2+2x_3}{3}=m\Rightarrow x_1+x_2+x_3=\frac{3}{2}m

For the new set,

mean

=\frac{1}{9}((x_1+x_1)+(x_1+x_2)+\dots+(x_3+x_3))

=\frac{1}{9}((3x_1+\frac{3}{2}m)+(3x_2+\frac{3}{2}m)+(3x_3+\frac{3}{2}m))

=\frac{1}{9}(3(\frac{3}{2}m)+3(\frac{3}{2}m))

=m

(Variance) For the original set,

\frac{(2x_1-m)^2+(2x_2-m)^2+(2x_3-m)^2}{3}=v

For the new set,

variance

=\frac{(x_1+x_1-m)^2+(x_1+x_2-m)^2+\dots+(x_3+x_3-m)^2}{9}

=\frac{(2x_1+2x_1-2m)^2+(2x_1+2x_2-2m)^2+\dots+(2x_3+2x_3-2m)^2}{36}

=\frac{(2x_1-m+2x_1-m)^2+(2x_1-m+2x_2-m)^2+\dots+(2x_3-m+2x_3-m)^2}{36}

=\frac{((2x_1-m)^2+(2x_1-m)^2+2(2x_1-m)(2x_1-m))+((2x_1-m)^2+(2x_2-m)^2+2(2x_1-m)(2x_2-m))+\dots+((2x_3-m)^2+(2x_3-m)^2+2(2x_3-m)(2x_3-m))}{36}

=\frac{(3(2x_1-m)^2+3v)+(3(2x_2-m)^2+3v)+(3(2x_3-m)^2+3v)}{36}  (note 2(2x_i-m)(2x_1+2x_2+2x_3-3m)=0 for i=1,2,3

=\frac{3(3v)+9v}{36}

=\frac{v}{2}

Remark:
1. It is easy to present the solution using the summation sign \sum which is out of the present syllabus.

2. Here is a solution of an M.C. question from the core math practice paper 2 issued on Jan 2012, for further reference

https://johnmayhk.wordpress.com/2012/01/12/just-a-core-math-question/

3. Here is a general version of the solution of question above:

https://johnmayhk.wordpress.com/2012/01/14/just-a-question-of-core-math-2/

發表迴響 »

仍無迴響。

RSS feed for comments on this post. TrackBack URI

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 變更 )

Twitter picture

You are commenting using your Twitter account. Log Out / 變更 )

Facebook照片

You are commenting using your Facebook account. Log Out / 變更 )

Google+ photo

You are commenting using your Google+ account. Log Out / 變更 )

連結到 %s

在 WordPress.com 建立免費網站或網誌.

%d 位部落客按了讚: