Quod Erat Demonstrandum

2017/01/10

某經典幾何題

Filed under: NSS,Pure Mathematics — johnmayhk @ 5:03 下午
Tags: , ,

三個大小不同的圓,沒有一個完全在另一個之內。對於每兩個圓,可畫出兩條公共外切線(common external tangents),及其交點,即下圖的 P,Q,R。

問: P,Q,R 共線(collinear)嗎?同學可以先探究一下(輕輕地改變 A 和 X 的位置吧~):

https://www.geogebra.org/m/WPk7sZUJ

(若有興趣知如何構作兩圓的外公共切線,可看文末的附錄*)

第一次接觸此題,大概在 1995 年,看以下數普書:

著者是:

作為某解題技巧的例子,見下:

現在做學生開心了,很多影像工具,如:

如此,不需單靠想像而是實際看到情況。

上述數普書,大抵是重點不同,沒有記載一些資料,比如那著名的工程師是誰?在網上查,他應是 John Edson Sweet.

//He paused for a moment and said, “Yes, that is perfectly self-evident." Astonished, his friend asked him to explain … Prof. Sweet, in effect, replied, “Instead of three circles in a plane, imagine three balls lying on a surface plate. Instead of drawing tangents, imagine a cone wrapped around each pair of balls. The apexes of the three cones will then lie on the surface plate. On top of the balls lay another surface plate. It will rest on the three balls and will be necessarily tangent to each of the three cones, and will contain the apexes of the three cones. Thus the apexes of the three cones will lie in both of the two plates, which is of course a straight line.//

當天看到那證明,把 2 維問題以 3 維觀點破之(正如有些數學問題,其定義域為實數,有時要靠高一層次的東西:複數,才可破之),驚為天人!可能太陶醉,當時沒有問:還有別的證明嗎?有的,但總不及上法的精巧。我現在把其中一個證明變成 M2 題目,同學可以試試作為溫習:

Let P,Q,R be points on the xy plane, \overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r} be position vectors of P,Q,R respectively.

(a) Prove that

(i) if P,Q,R are collinear, and x\overrightarrow{p}+y\overrightarrow{q}+z\overrightarrow{r}=\overrightarrow{0} for some scalars x,y and z, then x+y+z=0;

(solution)

(ii) if x\overrightarrow{p}+y\overrightarrow{q}+z\overrightarrow{r}=\overrightarrow{0} for some scalars x,y and z, such that x+y+z=0 and not all x,y,z are zeros, then P,Q,R are collinear.

(solution)

(b) Let O_1,O_2,O_3 be circles centred at A,B,C respectively. Let r_1,r_2,r_3 be radii of O_1,O_2,O_3 respectively, where r_1 > r_2 > r_3. None of circle lies completely inside another. Let P,Q,R be the points of intersection of common external tangents of O_1 & O_2, O_2 & O_3, O_3 & O_1 respectively. Let \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r} be the position vectors of A,B,C,P,Q,R respectively.

(i) By considering similar triangles, or otherwise,
prove that \overrightarrow{AP}=\frac{r_1}{r_1-r_2}\overrightarrow{AB}, and hence (r_1-r_2)\overrightarrow{p}=r_1\overrightarrow{b}-r_2\overrightarrow{a}.

(solution)

(ii) Evaluate r_3(r_1-r_2)\overrightarrow{p}+r_1(r_2-r_3)\overrightarrow{q}+r_2(r_3-r_1)\overrightarrow{r}.

(solution)

(iii) Prove that P,Q,R are collinear.

(solution)

還有沒有其他證明?一定有啦,網上找 Monge’s circle theorem,就是了。

——————————————————————————————————–

*(附錄)我中學畢業於一所 band 5 的工業學校,以下作圖法應該在初中的幾何繪圖堂學過的。

給定以 A 為圓心的圓,及外點 B:

如何構作經過 B 而切於圓形的切線(tangent to circle from B)?只要畫出以 A,B 為直徑的圓,交給定圓於 C,D,見下:

連 BC 及 BD 便是要求的切線:

修 core mathematics 的同學,試證明 BC 及 BD 是給定圓的切線。(提示:angle in semi-circle)

現在給定分別以 A, B 為圓心的兩圓:

如何構作它們的外公切線(common external tangents)?即

設 B 圓半徑較 A 圓小。想法是 A,B 圓同步收縮,直至 B 圓成點,從此點構作切線到收縮了的 A 圓,隨之 A,B 圓同步放大,切線隨之平移,它們也就是要求的外公切線。具體運作如下:以 A 為圓心,畫出半徑為 r_1-r_2(其中 r_1,r_2 分別是 A 圓及 B 圓之半徑)的圓 S:

由 B 點構作切線至圓 S:

由 A 連圓 S 上的切點,交 A 圓於 U,V。經 U,V 分別構作平行兩切線之直線,見下:

完。

習題:給定兩個不相交圓,構作內公切線(common internal tangents),即

發表迴響 »

仍無迴響。

RSS feed for comments on this post. TrackBack URI

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

你正使用 WordPress.com 帳號留言。 登出 / 變更 )

Twitter picture

你正使用 Twitter 帳號留言。 登出 / 變更 )

Facebook照片

你正使用 Facebook 帳號留言。 登出 / 變更 )

Google+ photo

你正使用 Google+ 帳號留言。 登出 / 變更 )

連結到 %s

在 WordPress.com 建立免費網站或網誌.