Quod Erat Demonstrandum

2017/06/29

4

Filed under: Fun — johnmayhk @ 12:03 下午

剛才偷偷在教員室想出以下式子:

777=\sqrt{2}\displaystyle \sum_{k=1}^{777}k^2\cos(45^o+(k-2)90^o)

如何得?

中二同學,首先簡化下式看看:

k^2-(k+1)^2-(k+2)^2+(k+3)^2

如果懶唔想做,可以: (more…)

廣告

2017/06/23

實數問題複數解決

Filed under: mathematics,NSS — johnmayhk @ 3:43 下午
Tags:

幾個月前的中學數學科諮詢文件見 M1,M2 外的 Further Mathematics 內容,重遇會考附加數學一些內容:

運用當中一個特性 z\overline{z}=|z|^2,輕易得出下式:

(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2

式子在說:平方和的積,仍是平方和。

現在的中學生,大部分不會知道甚麼是 (more…)

2017/06/21

兩題二次方程

Filed under: mathematics,NSS — johnmayhk @ 6:28 下午
Tags: ,

1.

早前學生問了道不錯的題:

Refer to the figure below.

If \alpha and \beta are x-coordinates of P and Q respectively such that \alpha^2+\beta^2=13, find the value(s) of m.

這是基本題目,同學應會解之如下:

-x^2+3x-2=mx-8
x^2+(m-3)x-6=0 (more…)

2017/06/10

正多邊形方程

Filed under: Additional / Applied Mathematics,Fun,mathematics,NSS — johnmayhk @ 12:24 下午
Tags: ,

初中學過極座標(polar coordinates),但只限於描述點之位置。至於描述圖像之方程,到高中,課程也只利用 xy-plane,諸如方程 y=x^2 是描述二次圖像云云。其實極座標系統也可描述圖像的方程,只是如此知識早已湮沒在舊課程內。

所謂極座標,即是說,任何一點 P,其座標為 P(r,\theta),其中 rP 和極 O 的距離,\theta 就是 P 的旋轉角(angle of rotation),亦即由所謂正 x-軸量度至 OP 的角度(逆時針者取正,順時針取負)。

所謂利用極座標系統描述圖像方程,即是說,設圖形上任意一點為 P(r,\theta),若找出關係式 r=r(\theta),則該圖像之方程就是 r=r(\theta)

利用極座標系統描述圖像方程,方程有時是很簡潔的。以下看到,利用一條式便可描繪出正多邊形的圖像:

https://www.desmos.com/calculator/vv7stc4nl0

如上圖所示,單位圓外接正 n 邊形的方程是 (more…)

2017/06/08

受保護的文章:放飛機

Filed under: Uncategorized — johnmayhk @ 5:17 下午

該內容受密碼保護。如欲檢視請在下方輸入你的密碼:

在 WordPress.com 建立免費網站或網誌.