Quod Erat Demonstrandum

2018/04/17

互斥與獨立

Filed under: NSS — johnmayhk @ 12:37 下午
Tags: , ,

免插聲明:純粹記錄某堂的片段,高手見諒。

今天上中五數學堂頗開心,可以和同學多點交流。剛開始談條件概率(conditional probability),有同學看到兩個分開的圈圈代表的事件:

問它們是彼此獨立的事件(independent events)嗎?

因為從圖看來,兩件事似乎不會影響對方。

這看法似乎頗合理:兩個東西分開,它們就冇影響,冇關。可是,數學上談獨立,另有所指; (more…)

廣告

2018/03/21

某求導題

Filed under: Additional / Applied Mathematics,NSS — johnmayhk @ 3:29 下午
Tags: , ,

早前中四測驗某題:

If \displaystyle \sqrt{x^3+y^3}=6(xy+1), find \displaystyle \frac{dy}{dx} at (1,-1).

建議答案如下:兩邊取平方

\displaystyle x^3+y^3=36(xy+1)^2

\displaystyle \Rightarrow \frac{d}{dx}(x^3+y^3)=\frac{d}{dx}36(xy+1)^2

從而得

\displaystyle \frac{dy}{dx}=\frac{24xy^2+24y-x^2}{y^2-24x^2y-24x}

所以,

\displaystyle \frac{dy}{dx}|_{(1,-1)}=-1

但有學生給出以下解: (more…)

2018/03/14

黃金比某級數

Filed under: Fun,mathematics,NSS — johnmayhk @ 11:11 上午
Tags: ,

早前見某個和黃金比(Golden ratio)有關的級數(series):

\displaystyle \Phi=\frac{1}{\Phi}+\frac{1}{\Phi^2}+\frac{1}{\Phi^3}+\dots

其中

\displaystyle \Phi=\frac{1+\sqrt{5}}{2}

乃黃金比也。

高中同學當然可以等比級數和(sum of an infinite geometric series)秒之,這裡介紹一個所謂無言證明。

如果 \Phi 是黃金比,即以下長方形

(more…)

2018/03/05

度數弧度微積分

Filed under: Additional / Applied Mathematics,NSS — johnmayhk @ 12:10 下午
Tags: , ,

(免插聲明:本篇頗無聊,高手見諒)

請問

\displaystyle \frac{d}{dx}\sin x at x=0^o

是多少?

M2 學生應知

\displaystyle \frac{d}{dx}\sin x=\cos x

代入 x=0^o,得

\displaystyle \frac{d}{dx}\sin x=\cos 0^o=1

完。

但 \displaystyle \frac{d}{dx}\sin x=\cos x 是基於考慮 x 是以弧度(radian)量度下的產物,若題目的 x 是以度數(degree)量度如何? (more…)

2018/01/23

某類三角恆等式記法

Filed under: mathematics,NSS — johnmayhk @ 10:24 下午
Tags: ,

首先要知

\sin(-\theta)\equiv -\sin\theta
\cos(-\theta)\equiv \cos\theta
\tan(-\theta)\equiv -\tan\theta

之後,畫以下圖像:

(more…)

2017/11/14

as gs

Filed under: Additional / Applied Mathematics,mathematics,NSS — johnmayhk @ 12:29 上午
Tags:

同事擬 core mathematics 某統測題如下:

Derive the formula for the sum of first n terms of the following sequence in terms of a,b,d,r,n, where r \ne 1.

ab,(a+d)br,(a+2d)br^2,(a+3d)br^3,\dots

我班沒人得出答案。沒所謂,全卷 67 分,這必答題佔 6 分而已。

上述數列稱為 arithmetico-geometric sequence,我以前教 applied math 時就隨便稱它為 AGS。

在 applied math 的課程 (more…)

2017/10/28

一題多解

Filed under: Junior Form Mathematics,mathematics,NSS — johnmayhk @ 12:14 上午
Tags: ,

數學可以帶出其中一個教訓:解決問題的辦法並非單一。

(不過有多少學生解完題目,會如此神心尋求另外解法?面對極度規範化的考題,方法多數固定,對一些同學來說,莫說一題多解,更多時是找不到解法。)

例子一

不知初中同學你會有多少辦法處理下題:

證明:r^2=pq

方法一:相似三角 (more…)

2017/09/21

core math 某題:標準差

Filed under: mathematics,NSS — johnmayhk @ 4:49 下午
Tags:

把某統計資料集合,比如

以點圖(Dot plot)表示如下:

我們可以找出這集的標準差(standard deviation),電腦代勞,見下:

http://www.wolframalpha.com/input/?i=standard+deviation+of+1,1,1,2,2,2,2,2,3,3,4,4,4,5

好了,現有兩組資料,分別以紅藍兩種顏色表示如下:

問:兩組資料集的標準差相等嗎? (more…)

2017/08/13

最小值

Filed under: Additional / Applied Mathematics,NSS,Pure Mathematics — johnmayhk @ 6:19 下午

教中三不等式時,跟同學討論過:

已知

x\ge 3

我們不能說

x 的最小值是 3,

除非 x 真的可以等於 3。

舉一例。

(more…)

2017/08/12

重積求面積

Filed under: mathematics,NSS,University Mathematics — johnmayhk @ 6:10 下午
Tags:

1.某中四題:

求直線 x+y=1, x+y=5, x-2y=-2x-2y=4 圍出來的平行四邊形之面積。

可用 (more…)

2017/06/23

實數問題複數解決

Filed under: mathematics,NSS — johnmayhk @ 3:43 下午
Tags:

幾個月前的中學數學科諮詢文件見 M1,M2 外的 Further Mathematics 內容,重遇會考附加數學一些內容:

運用當中一個特性 z\overline{z}=|z|^2,輕易得出下式:

(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2

式子在說:平方和的積,仍是平方和。

現在的中學生,大部分不會知道甚麼是 (more…)

2017/06/21

兩題二次方程

Filed under: mathematics,NSS — johnmayhk @ 6:28 下午
Tags: ,

1.

早前學生問了道不錯的題:

Refer to the figure below.

If \alpha and \beta are x-coordinates of P and Q respectively such that \alpha^2+\beta^2=13, find the value(s) of m.

這是基本題目,同學應會解之如下:

-x^2+3x-2=mx-8
x^2+(m-3)x-6=0 (more…)

2017/06/10

正多邊形方程

Filed under: Additional / Applied Mathematics,Fun,mathematics,NSS — johnmayhk @ 12:24 下午
Tags: ,

初中學過極座標(polar coordinates),但只限於描述點之位置。至於描述圖像之方程,到高中,課程也只利用 xy-plane,諸如方程 y=x^2 是描述二次圖像云云。其實極座標系統也可描述圖像的方程,只是如此知識早已湮沒在舊課程內。

所謂極座標,即是說,任何一點 P,其座標為 P(r,\theta),其中 rP 和極 O 的距離,\theta 就是 P 的旋轉角(angle of rotation),亦即由所謂正 x-軸量度至 OP 的角度(逆時針者取正,順時針取負)。

所謂利用極座標系統描述圖像方程,即是說,設圖形上任意一點為 P(r,\theta),若找出關係式 r=r(\theta),則該圖像之方程就是 r=r(\theta)

利用極座標系統描述圖像方程,方程有時是很簡潔的。以下看到,利用一條式便可描繪出正多邊形的圖像:

https://www.desmos.com/calculator/vv7stc4nl0

如上圖所示,單位圓外接正 n 邊形的方程是 (more…)

2017/05/28

Transformation of graphs

Filed under: NSS,Teaching — johnmayhk @ 8:48 下午
Tags:

Share some points about the topic ‘transformation of graphs’. Nothing new.

Transformation of graphs in the HKDSE syllabus refers to

– translation
– reflection (with respect to the x-axis or the y-axis)
– enlargement or contraction (along the x-axis or the y-axis)

and all happen in the xy-plane.

(more…)

2017/04/22

逆矩陣

Filed under: mathematics,NSS,University Mathematics — johnmayhk @ 11:10 下午
Tags:

趁未失憶,匆匆寫下,高手見諒。

教科書稱:對於方陣(square matrix)A,若存在方陣 B 使

AB=BA=I

則稱 BA 的逆矩陣,記之曰 B=A^{-1}

做習題時,學生檢查了 AB=I 後,著他不用浪費時間再檢查 BA,說: (more…)

後一頁 »

在 WordPress.com 建立免費網站或網誌.