# Quod Erat Demonstrandum

## 2017/06/23

### 實數問題複數解決

Filed under: mathematics,NSS — johnmayhk @ 3:43 下午
Tags:

$(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2$

## 2017/06/21

### 兩題二次方程

Filed under: mathematics,NSS — johnmayhk @ 6:28 下午
Tags: ,

1.

Refer to the figure below.

If $\alpha$ and $\beta$ are x-coordinates of P and Q respectively such that $\alpha^2+\beta^2=13$, find the value(s) of m.

$-x^2+3x-2=mx-8$
$x^2+(m-3)x-6=0$ (more…)

## 2017/06/10

### 正多邊形方程

Filed under: Additional / Applied Mathematics,Fun,mathematics,NSS — johnmayhk @ 12:24 下午
Tags: ,

https://www.desmos.com/calculator/vv7stc4nl0

## 2017/05/28

### Transformation of graphs

Filed under: NSS,Teaching — johnmayhk @ 8:48 下午
Tags:

Share some points about the topic ‘transformation of graphs’. Nothing new.

Transformation of graphs in the HKDSE syllabus refers to

– translation
– reflection (with respect to the x-axis or the y-axis)
– enlargement or contraction (along the x-axis or the y-axis)

and all happen in the xy-plane.

(more…)

## 2017/04/22

### 逆矩陣

Filed under: mathematics,NSS,University Mathematics — johnmayhk @ 11:10 下午
Tags:

$AB=BA=I$

## 2017/04/21

### 三垂線定理

Filed under: mathematics,NSS,Pure Mathematics,University Mathematics — johnmayhk @ 12:56 下午
Tags: ,

（一）前言

## 2017/04/16

### 行列式特性

Filed under: NSS,Pure Mathematics — johnmayhk @ 5:05 下午
Tags: ,

Factorize $\left|\begin{array}{rcl}a &b &c\\b+c &c+a &a+b \\a^2 &b^2 &c^2\\\end{array}\right|$.

$\left|\begin{array}{rcl}a+b+c &a+b+c &a+b+c\\b+c &c+a &a+b \\a^2 &b^2 &c^2\\\end{array}\right|$

$=(a+b+c)\left|\begin{array}{rcl}1 &1 &1\\b+c &c+a &a+b \\a^2 &b^2 &c^2\\\end{array}\right|$

$\left|\begin{array}{rcl}a &b-a &c-a\\b+c &a-b &a-c \\a^2 &b^2-a^2 &c^2-a^2\\\end{array}\right|$

## 2017/03/20

### 無聊 bonus

Filed under: mathematics,NSS — johnmayhk @ 9:55 上午
Tags:

Solve the following equations for real $x$.

1. $1+9^x+25^x=3^x+5^x+15^x$

2. $5^{x+1}+5(2^x)=3(10^x)+25^x+4^x+5$

## 2017/03/19

### 盛水水深

Filed under: Additional / Applied Mathematics,HKCEE,NSS — johnmayhk @ 12:43 下午
Tags:

$(H-\sqrt[3]{H^3-h^3})$ 單位。

## 2017/03/17

### 不排在一起

Filed under: NSS — johnmayhk @ 1:58 下午
Tags:

1. m 男 n 女排 1 行

(a) 若女不排在一起，排列數是？

## 2017/01/11

### 三次方程某解法

Filed under: NSS — johnmayhk @ 6:32 下午
Tags:

$x^3-26x-5=0$　？

$x^3-26x-5=0$

$\Rightarrow -x(5)^2-(5)+x^3-x=0$

$\Rightarrow 5=\frac{1\pm \sqrt{1-4(-x)(x^3-x)}}{2(-x)}$

$\Rightarrow -10x-1=\pm\sqrt{(2x^2-1)^2}$

## 2017/01/10

### 某經典幾何題

Filed under: NSS,Pure Mathematics — johnmayhk @ 5:03 下午
Tags: , ,

https://www.geogebra.org/m/WPk7sZUJ

（若有興趣知如何構作兩圓的外公共切線，可看文末的附錄*）

## 2016/12/11

### 小心出題

Filed under: mathematics,NSS — johnmayhk @ 11:18 下午
Tags: ,

$AB=\sqrt{30^2+45^2-2(30)(45)\cos(60^o-40^o)}=19.7$ m

$AB=45\cos 40^o-30\cos 60^o=19.5$ m

## 2016/08/29

### 講兩題

Filed under: Junior Form Mathematics,NSS — johnmayhk @ 5:02 下午
Tags: , ,

（注：上圖式子是 $k^{th}$ moment 的定義。特別地，當 k=2，它就是方差 variance。）

（一）

$\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$ (more…)

## 2016/07/26

### 相同特徵值及凱萊哈密頓

Filed under: NSS,Pure Mathematics — johnmayhk @ 10:29 上午
Tags: , ,

https://johnmayhk.wordpress.com/2016/07/22/flf-and-matrix/

$M=\left(\begin{array}{rcl}a& b\\c& d\\\end{array}\right)$　的特徵方程為 $\det(M-\lambda I)=0$，即

$\lambda^2-(a+d)\lambda+(ad-bc)=0$

$(a+d)$ 就是矩陣 $M$ 的跡（trace），即對角元的和，也是特徵值的和（sum of roots）；而

$(ad-bc)$ 就是矩陣 $M$ 的行列式（determinant），也是特徵值的積（product of roots）。