Quod Erat Demonstrandum

2017/06/23

實數問題複數解決

Filed under: mathematics,NSS — johnmayhk @ 3:43 下午
Tags:

幾個月前的中學數學科諮詢文件見 M1,M2 外的 Further Mathematics 內容,重遇會考附加數學一些內容:

運用當中一個特性 z\overline{z}=|z|^2,輕易得出下式:

(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2

式子在說:平方和的積,仍是平方和。

現在的中學生,大部分不會知道甚麼是 (more…)

2017/06/21

兩題二次方程

Filed under: mathematics,NSS — johnmayhk @ 6:28 下午
Tags: ,

1.

早前學生問了道不錯的題:

Refer to the figure below.

If \alpha and \beta are x-coordinates of P and Q respectively such that \alpha^2+\beta^2=13, find the value(s) of m.

這是基本題目,同學應會解之如下:

-x^2+3x-2=mx-8
x^2+(m-3)x-6=0 (more…)

2017/06/10

正多邊形方程

Filed under: Additional / Applied Mathematics,Fun,mathematics,NSS — johnmayhk @ 12:24 下午
Tags: ,

初中學過極座標(polar coordinates),但只限於描述點之位置。至於描述圖像之方程,到高中,課程也只利用 xy-plane,諸如方程 y=x^2 是描述二次圖像云云。其實極座標系統也可描述圖像的方程,只是如此知識早已湮沒在舊課程內。

所謂極座標,即是說,任何一點 P,其座標為 P(r,\theta),其中 rP 和極 O 的距離,\theta 就是 P 的旋轉角(angle of rotation),亦即由所謂正 x-軸量度至 OP 的角度(逆時針者取正,順時針取負)。

所謂利用極座標系統描述圖像方程,即是說,設圖形上任意一點為 P(r,\theta),若找出關係式 r=r(\theta),則該圖像之方程就是 r=r(\theta)

利用極座標系統描述圖像方程,方程有時是很簡潔的。以下看到,利用一條式便可描繪出正多邊形的圖像:

https://www.desmos.com/calculator/vv7stc4nl0

如上圖所示,單位圓外接正 n 邊形的方程是 (more…)

2017/06/08

受保護的文章:放飛機

Filed under: Uncategorized — johnmayhk @ 5:17 下午

該內容受密碼保護。如欲檢視請在下方輸入你的密碼:

2017/05/28

Transformation of graphs

Filed under: NSS,Teaching — johnmayhk @ 8:48 下午
Tags:

Share some points about the topic ‘transformation of graphs’. Nothing new.

Transformation of graphs in the HKDSE syllabus refers to

– translation
– reflection (with respect to the x-axis or the y-axis)
– enlargement or contraction (along the x-axis or the y-axis)

and all happen in the xy-plane.

(more…)

2017/05/27

帕斯卡三角形某結果

Filed under: Fun,Pure Mathematics — johnmayhk @ 8:56 上午
Tags:

帕斯卡三角形(Pascal’s triangle),好玩。這次玩乘。

去片

證明 (more…)

2017/04/22

逆矩陣

Filed under: mathematics,NSS,University Mathematics — johnmayhk @ 11:10 下午
Tags:

趁未失憶,匆匆寫下,高手見諒。

教科書稱:對於方陣(square matrix)A,若存在方陣 B 使

AB=BA=I

則稱 BA 的逆矩陣,記之曰 B=A^{-1}

做習題時,學生檢查了 AB=I 後,著他不用浪費時間再檢查 BA,說: (more…)

2017/04/21

三垂線定理

Filed under: mathematics,NSS,Pure Mathematics,University Mathematics — johnmayhk @ 12:56 下午
Tags: ,

(一)前言

第一次聽「三垂線定理」,大抵是今年二月在大同的群組:

第二次聽「三垂線定理」是 (more…)

2017/04/17

人類總是

Filed under: mathematics — johnmayhk @ 6:12 下午

#無聊慎入

很久沒(被安排)教中一,查簿時看到中一學生犯了不少運算錯誤,比如

Solve \frac{1}{2}(x-1)=3.

學生給的第一步是

\frac{1}{2}x=3+1 (more…)

2017/04/16

行列式特性

Filed under: NSS,Pure Mathematics — johnmayhk @ 5:05 下午
Tags: ,

觀同事課,談因式分解行列式(determinant)。

他先給最簡單例子:

Factorize \left|\begin{array}{rcl}a &b &c\\b+c &c+a &a+b \\a^2 &b^2 &c^2\\\end{array}\right|.

我估熟練者很快會把第一行化做 a+b+c,再抽之,即

\left|\begin{array}{rcl}a+b+c &a+b+c &a+b+c\\b+c &c+a &a+b \\a^2 &b^2 &c^2\\\end{array}\right|

=(a+b+c)\left|\begin{array}{rcl}1 &1 &1\\b+c &c+a &a+b \\a^2 &b^2 &c^2\\\end{array}\right|

但對剛接解行列式特性的學生,未必如此想。當老師問,有人答

\left|\begin{array}{rcl}a &b-a &c-a\\b+c &a-b &a-c \\a^2 &b^2-a^2 &c^2-a^2\\\end{array}\right|

之後 (more…)

2017/04/05

答問

Filed under: Junior Form Mathematics — johnmayhk @ 11:11 下午
Tags:

網友問:

\displaystyle \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=0

\displaystyle \frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}

其實我沒有甚麼好方法 (more…)

2017/03/20

無聊 bonus

Filed under: mathematics,NSS — johnmayhk @ 9:55 上午
Tags:

隨便出所謂 bonus 題:

Solve the following equations for real x.

1. 1+9^x+25^x=3^x+5^x+15^x

2. 5^{x+1}+5(2^x)=3(10^x)+25^x+4^x+5

中四同學可以試試。

其實 (more…)

2017/03/19

盛水水深

Filed under: Additional / Applied Mathematics,HKCEE,NSS — johnmayhk @ 12:43 下午
Tags:

常見初中數學題:

圓錐容器高 H 單位。容器內盛水,垂直倒置時水深 h 單位(Fig. 1),把其倒轉平放水平面後(Fig.2),求水深。

利用相似形體積比等於對應邊比之立方,不難得 k=\sqrt[3]{H^3-h^3},故水深為

(H-\sqrt[3]{H^3-h^3}) 單位。

早前同事出題:如果容器是橢圓體,同樣問題如何解決?

具體一點,參考下圖

容器形狀是橢圓 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 環繞 y-軸轉出來的旋轉體。

容器內盛水,水深 h 單位(Fig. 3)把容器沿 O 轉 90 度(Fig.4)(注:其實是沿 z-軸),求水深。 (more…)

2017/03/17

不排在一起

Filed under: NSS — johnmayhk @ 1:58 下午
Tags:

講兩題。

1. m 男 n 女排 1 行

(a) 若女不排在一起,排列數是?

先放置 m 男,共 m! 種排列。

男旁留一空位放置女,共 (m+1) 空位。

情況 1: (more…)

2017/01/11

三次方程某解法

Filed under: NSS — johnmayhk @ 6:32 下午
Tags:

如何解三次方程(cubic equation)

x^3-26x-5=0 ?

這裡有個解法:

x^3-26x-5=0

\Rightarrow -x(5)^2-(5)+x^3-x=0

變成一條 quadratic equation in ‘5’,於是

\Rightarrow 5=\frac{1\pm \sqrt{1-4(-x)(x^3-x)}}{2(-x)}

\Rightarrow -10x-1=\pm\sqrt{(2x^2-1)^2}

所以 (more…)

後一頁 »

在WordPress.com寫網誌.